Rajendra Zope

Phone: (915) 747-8742
Fax: (915) 747-5447
E-mail:
rzope@utep.edu

Office: Room 116A in Physical Science Building 210

Mailing address:

 Department of Physics
University of Texas at El Paso
500 W. University Avenue
El Paso, TX 79968, USA
500 University , MSN 5C3

Professional Background:

PhD in Physics, University of Pune

Postdoc:   Atomic Energy Center (CEA), Grenoble; US Naval Research Laboratory, Washington, DC.

Research Interests

My research goals are towards understandings the properties of molecules, nanocrystals and materials using density functional theory. Major efforts of my group are devoted towards the development of density functional based code and the self-interaction-free density functional approximations. The code development projects are UTEP-NRLMOL electronic structure code that allows density functional calculations upto 50000 basis functions; FLOSIC (Fermi-Lowdin Orbial Self Interaction Corrected (FLOSIC)) code for self-interaction free density functional calculations and DFTSW (Density functional theory in the South West) code for density functional calculations.

Publications

Useful Links


Publication List

  1. Study of Self-Interaction Errors in Density-Functional Calculations of Magnetic Exchange Coupling Constants Using Three Self-Interaction-Correction Methods,
  2. P. Mishra, Y. Yamamoto, P.C. Chang, D. B. Nguyen, JE Peralta, T. Baruah, R. R. Zope,
    J. Phys. Chem. 126, 1923 (2022); https://doi.org/10.1021/acs.jpca.1c10354
    (Supp. Cover article).

  3. Pressure dependent magnetic properties on bulk CrBr3 single crystals,
  4. R Olmos, Shamsul Alam, Po Hao Chang, K Gandha, IC Nlebedim, A Cole, F Tafti, R. R. Zope, S R Singamaneni,
    Journal of Alloys and Compounds (2022);https://doi.org/10.1016/j.jallcom.2022.165034

  5. Fermi-Löwdin-orbital self-interaction correction using the optimized-effective-potential method within the Krieger-Li-Iafrate approximation,
  6. Carlos Diaz, Tunna Baruah, Rajendra. R. Zope,
    Physical Review A 103 (4), 042811 (2021); https://doi.org/10.1103/PhysRevA.103.042811

  7. Self-interaction-corrected Kohn–Sham effective potentials using the density-consistent effective potential method,
  8. Carlos Diaz, L Basurto, S Adhikari, Y Yamamoto, A Ruzsinszky, T Baruah, Rajendra R. Zope,
    The Journal of Chemical Physics 155 (6), 064109 (2021).https://doi.org/10.1063/5.0041646

  9. Implementation of Perdew-Zunger self-interaction correction in real space using Fermi-Lowdin orbitals,
  10. Carlos M. Diaz, P. Suryanarayana, Q. Xu, T. Baruah, J.E. Pask, Rajendra R. Zope,
    The Journal of Chemical Physics 154 (2), 024102, (2021).https://doi.org/10.1063/5.0041646

  11. Local self-interaction-correction method with simple scaling factor,
  12. Selim Romero, Y Yamamoto, T Baruah, Rajendra R. Zope,
    Physical Chemistry Chemical Physics 23 (3), 2406-2418 (2021).https://doi.org/10.1063/5.0041646

  13. How well do self-interaction corrections repair the overestimation of static polarizabilities in density functional calculations?,
  14. S Akter, JA Vargas, K Sharkas, JE Peralta, KA Jackson, T Baruah, R. R. Zope,
    Physical Chemistry Chemical Physics 23 (34), 18678-18685 (2021).https://doi.org/10.1063/5.0041646

  15. Study of self-interaction-errors in barrier heights using locally scaled and Perdew-Zunger self-interaction methods,
  16. P Mishra, Y Yamamoto, JK Johnson, KA Jackson, R. R. Zope, and T Baruah,
    J. Chem. Phys. 156, 014306 (2022).https://doi.org/10.1016/j.jallcom.2022.165034

  17. Static dipole polarizabilities of polyacenes using self-interaction-corrected density functional approximations,
  18. S Akter, Y Yamamoto, R. R. Zope, and T. Baruah
    Journal of Chemical Physics, 154, 114305 (2021);https://doi.org/10.1063/5.0041265

  19. Exploring and enhancing the accuracy of interior-scaled Perdew–Zunger self-interaction correction,
  20. P Bhattarai, B Santra, K Wagle, Y Yamamoto, R. R. Zope, A Ruzsinszky, KA Jackson, J. P. Perdew,
    The Journal of Chemical Physics 154 (9), 094105 (2021). https://doi.org/10.1063/5.0041646

  21. Density-related properties from self-interaction corrected density functional theory calculations,
  22. KPK Withanage, P. Bhattarai, JE Peralta, R. R. Zope, T. Baruah, JP. Perdew, KA Jackson,
    The Journal of Chemical Physics 154 (8), 084112 (2021).

  23. Magnetic structure, excitations and short-range order in honeycomb Na2Ni2TeO6,
  24. N. Episcopo, Po-Hao Chang, TW Heitmann, K Wangmo, JM Guthrie, M Fitta, RA Klein, N Poudel, K Gofryk, R R Zope, CM Brown, HS Nair,
    Journal of Physics: Condensed Matter 33 (37), 375803 (2021). https://doi.org/10.1063/5.0041646

  25. A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
  26. Rajendra R. Zope, Yoh Yamamoto, Carlos M. Diaz, Tunna Baruah, Juan E. Peralta, Koblar A. Jackson, Biswajit Santra, and J. P. Perdew
    J. Chem. Phys. 151, 214108 (2019). (Featured article- Editor’s choice award).
    Also, Department of Energy Office of Science’s highlight (https://www.energy.gov/science/bes/articles/resolving-self-interaction-correction-paradox-molecular-modeling).

  27. Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA
  28. Y. Yamamoto, Alan Salcedo(undergraduate), Carlos Diaz, M. Alam, T. Baruah, and Rajendra R. Zope
    Phys. Chem. Chem. Phys. (2020) (https://doi.org/10.1039/D0CP02717K).

  29. Self-interaction error overbinds water clusters but cancels in structural energy differences
  30. K. Sharkas, Kamal Wagle, Biswajit Santra, Sharmin Akter, Rajendra R. Zope, Tunna Baruah, Koblar A. Jackson, John P. Perdew, and Juan E. Peralta
    Proceedings of National Academy of Sciences (2020) (https://doi.org/10.1073/pnas.192125811).

  31. Improvements to the scaling-down Perdew-Zunger self-interaction in many electron region
  32. Yoh Yamamoto, Selim Romero, Tunna Baruah, and Rajendra R. Zope
    Journal of Chemical Physics, J. Chem. Phys. 152, 174112 (2020); https://doi.org/10.1063/5.0004738.

  33. A Step in the Direction of Resolving the Paradox of Perdew-Zunger Self-interaction Correction. II. Gauge Consistency of the Energy Density at Three Levels of Approximation
  34. Puskar Bhattarai, Kamal Wagle, Chandra Shahi, Yoh Yamamoto, Selim Romero, Biswajit Santra, Rajendra R. Zope, J. E. Peralta, K. A. Jackson, J. P. Perdew
    J. Chem. Phys. 152, 214109 (2020); https://doi.org/10.1063/5.0010375.

  35. Importance of self-interaction-error removal in density functional calculations on water cluster anions
  36. Jorge Vargas, Peter Ufondu, Tunna Baruah, Yoh Yamamoto, Koblar A. Jackson, and Rajendra R. Zope
    Phys. Chem. Chem. Phys., 22, 3789-3799 (2020).

  37. Self-interaction-free electric dipole polarizabilities for atoms and their ions using the Fermi-Löwdin self-interaction correction (FLO-SIC)
  38. K. P. K. Withanage, S. Akter, C. Shahi, R. P. Joshi, C. Diaz, Y. Yamamoto, R R. Zope, T. Baruah, J. P. Perdew, J. E. Peralta, and K. A. Jackson
    Phys. Rev. A 100, 012505 (2019).

  39. The effect of self-interaction error on electrostatic dipoles calculated using density functional theory
  40. Alexander I. Johnson, Kushantha P. K. Withanage, Kamal Sharkas, Yoh Yamamoto, Tunna Baruah, Rajendra R. Zope, Juan E. Peralta, and Koblar A. Jackson
    J. Chem. Phys. 151, 174106 (2019).

  41. Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional
  42. Y. Yamamoto, C. M. Diaz, L. Basurto, K. A. Jackson, T. Baruah, and R. R. Zope
    J. Chem. Phys. 151, 154105 (2019).

  43. Antiferromagnetism and the emergence of frustration in saw-tooth lattice chalcogenide olivines Mn2SiS4−xSex (x = 0-4)
  44. H. Nhalil, R. Baral, B. O. Khamala, A. Cosio, S. R. Singamaneni, M. Fitta, D. Antonio, K. Gofryk, R. R. Zope, T. Baruah, B. Saparov, H. S. Nair
    Physical Review B 99, 184434 (2019).

  45. Stretched or noded orbital densities and self-interaction correction in density functional theory
  46. Chandra Shahi, Puskar Bhattarai, Kamal Wagle, Biswajit Santra, Sebastian Schwalbe, Torsten Hahn, Jens Kortus, Koblar A Jackson, Juan E Peralta, Kai Trepte, Susi Lehtola, Niraj K Nepal, Hemanadhan Myneni, Bimal Neupane, Santosh Adhikari, Adrienn Ruzsinszky, Yoh Yamamoto, Tunna Baruah, Rajendra R Zope, John P Perdew
    Journal of Chemical Physics, 150, 174102 (2019)

  47. Analytic atomic gradients in the Fermi-Löwdin orbital self-interaction correction: Analytic Atomic Gradients in the Fermi-Löwdin Orbital Self-Interaction Correction
  48. Kai Trepte, Sebastian Schwalbe, Torsten Hahn, Jens Kortus, Der-You Kao, Yoh Yamamoto, Tunna Baruah, Rajendra R Zope, Kushantha PK Withanage, Juan E Peralta, Koblar A Jackson
    Journal of Computational Chemistry, 40, 820-825 (2019).

  49. Shrinking Self-Interaction Errors with the Fermi–Löwdin Orbital Self-Interaction-Corrected Density Functional Approximation
  50. Kamal Sharkas, Lin Li, Kai Trepte, Kushantha PK Withanage, Rajendra P Joshi, Rajendra R Zope, Tunna Baruah, J Karl Johnson, Koblar Alan Jackson, Juan E Peralta
    The Journal of Physical Chemistry A, 22 (48), pp 9307–9315(2018).

  51. Fermi-Löwdin orbital self-interaction correction to magnetic exchange couplings
  52. Rajendra P Joshi, Kai Trepte, Kushantha PK Withanage, Kamal Sharkas, Yoh Yamamoto, Luis Basurto, Rajendra R Zope, Tunna Baruah, Koblar A Jackson, Juan E Peralta
    The Journal of Chemical Physics, 149, 164101(2018).

  53. Electronic structure calculation of vanadium‐and scandium‐based endohedral fullerenes VSc2N@C2n (2n = 70, 76, 78, 80)
  54. S Bhusal, T Baruah, Y Yamamoto, RR Zope
    International Journal of Quantum Chemistry, e25785 (2018).

  55. On the question of the total energy in the Fermi-Löwdin orbital self-interaction correction method
  56. KPK Withanage, K Trepte, JE Peralta, T Baruah, R Zope, KA Jackson
    Journal of Chemical Theory and Computation,14 (8), pp 4122–4128(2018).

  57. Analytic atomic gradients in the Fermi‐Löwdin orbital self‐interaction correction
  58. Kai Trepte, Sebastian Schwalbe, Torsten Hahn, Jens Kortus, Der‐You Kao, Yoh Yamamoto, Tunna Baruah, Rajendra R Zope, Kushantha PK Withanage, Juan E Peralta, Koblar A Jackson
    Journal of Computational Chemistry, 820 (2018).

  59. A DFT analysis of the ground and charge-transfer excited states of Sc3N@Ih–C80 fullerene coupled with metal-free and zinc-phthalocyanine
  60. F Amerikheirabadi, C Diaz, N Mohan, RR Zope, and T. Baruah
    Phys. Chem. Chem. Phys., 20, 25841-25848 (2018).

  61. Diels-Alder Addition to H2O@C60 an Electronic and Structural Study
  62. JU Reveles, KC Govinda, T Baruah, RR Zope
    Chemical Physics Letters, 685, 198 (2017).

  63. Hydrogen storage in Bimetallic Ti-Al Sub-nanoclusters Supported on Graphene
  64. CMR Castillo,JU Reveles, MEC Quintal, R. R. Zope, R de Coss
    Phys. Chem. Chem. Phys. 19, 21174 (2017). < /a>

  65. Donor-Fullerene Dyads for Energy Cascade Organic Solar Cells
  66. JS Cowart, C Liman, A Garnica, ZA Page, E Lim, R. R Zope, T. Baruah, C. J .Hawker, M. L. Chabinyc
    Inorganica Chimica Acta, 468, 192 (2017).

  67. Electronic and Structural Study of Zn x S x [x= 12, 16, 24, 28, 36, 48, 96, and 108] Cage Structures
  68. S Bhusal, JAR Lopez, JU Reveles, T Baruah, RR Zope
    The Journal of Physical Chemistry A 121, 3486-3493 (2017).

  69. Magnetic Anisotropy Energy of Transition Metal Alloy Clusters
  70. Nabil Hoque, Tunna Baruah, J. U. Reveles, and Rajendra R. Zope
    Chapter in Clusters: Structure, Bonding, and Reactivity, Vol. 23 in Challenges and Advances in computational Chemistry and Physics, Springer International Publishing AG, Eds. M. T. Nguyen and B. Kiran, page 269 (2016).

  71. Electronic and Optical Properties of VSc2N@C68 Fullerene
  72. S. Bhusal, S. Bhatta, R. R. Zope and T. Baruah
    J. Phys. Chem. C. 120, 27813 (2016).

  73. Excited Electronic States of Porphyrin-Based Assemblies Using Density Functional Theory
  74. Gloria I. Cárdenas-Jirón, Tunna Baruah, Rajendra R. Zope
    Handbook of Porphyrin Science(World Scientific Publishing Company), Volume 42: Towards Tuned Properties of Porphyrinoids, Edited by: Karl M Kadish (University of Houston, USA), Kevin M Smith
    (Louisiana State University, USA), Roger Guilard (Université de Bourgogne, France),
    September 2016, pp. 233-289.

  75. Electronic and Structural Properties of C60 and Sc3N@C80 Supported on Graphene Nanoflakes
  76. J. Ulises Reveles, Nakul N. Karle, Tunna Baruah, and Rajendra R. Zope
    J. Phys. Chem. C, 120, 26083 (2016).

  77. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT
  78. T. Baruah, A. Garnica, M. Paggen, L. Basurto and R. R. Zope
    J. Chem. Phys. 144, 144304 (2016).

  79. Density functional investigation of the electronic structure and charge transfer excited states of a multichromophoric antenna
  80. L. Basurto, R. R. Zope, and T. Baruah
    Chemical Physics 469, 1 (2016).

  81. Ti4- and Ni4-Doped Defective Graphene Nanoplatelets as Efficient Materials for Hydrogen Storage
  82. RC. M. Ramos-Castillo, J. U. Reveles, M. E. Cifuentes-Quintal, R. R. Zope, and R. de Coss
    J. Phys. Chem. C 120, 5001 (2016).

  83. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
  84. Rajendra R. Zope, S. Bhusal, L. Basurto, Tunna Baruah, and Koblar Jackson
    J. Chem. Phys. 143, 084306 (2015)

  85. Crystalline Alloys of Organic Donors and Acceptors Based on TIPS-Pentacene
  86. Monica Kai Jes, Tunna Baruah, Parking Guan, Sean Parkin, Balaji Purushothaman, Rajendra Zope, and Michael Chabinyc
    J. Phys. Chem. C, 2015, 119 (36), pp 20823–20832

  87. Palladium Clusters Supported on Graphene Monovacancies for Hydrogen Storage
  88. C.M. Ramos, J.U. Reveles, R.R. Zope, R. de Coss
    J. Phys. Chem. C, 119(15), 8402-8409 (2015).

  89. The electronic structure and charge transfer excited states of the endohedral trimetallic nitride C80 (Ih) fullerenes–Zn-tetraphenyl porphyrin dyads
  90. Luis Basurto, Fatemeh Amerikheirabadi, Rajendra Zope and Tunna Baruah
    Phys. Chem. Chem. Phys. 17, 5832 (2015).

  91. Al12Cu Superatom as Stable Building Block of Ionic Salts
  92. J. U. Reveles, T. Baruah, and Rajendra Zope
    Jounal of Physical Chemistry C 119, 5129 (2015).

  93. FeO2/MgO(1 0 0) supported cluster: Computational pursual for a low-cost and low-temperature CO nanocatalyst
  94. A.Y. Zamora, J.U. Reveles, R. Mejia-Olvera, T. Baruah, and R.R. Zope
    Chemical Physics Letters, 612, 117 (2014).

  95. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C60 molecular triad
  96. Marco Olguin, Luis Basurto, Rajendra R. Zope, and Tunna Baruah
    Journal of Chemical Physics, 140, 204309 (2014).

  97. Smooth scaling of valence electronic properties in fullerenes: from one carbon atom, to C60, to graphene
  98. G. R. Lewis, W.E. Bunting, R. R. Zope, B. I. Dunlap, and J. C. Ellenbogen
    Physical Review A 87, 052515 (2013).

  99. Effect of Geometrical Orientation on the Charge-Transfer Energetics of Supramolecular (tetraphenyl)-porphyrin/C60 Dyads
  100. Marco Olguin, Tunna Baruah, and Rajendra R. Zope,
    Journal of Chemical Physics 138, 074306 (2013).

  101. Charge transfer excitation energies by perturbative delta self consistent method
  102. Tunna Baruah, Marco Olguin, and Rajendra R. Zope,
    Journal of Chemical Physics 137, 084316 (2012).

  103. Charge transfer excitation energies in cofacial porphyrin fullerene complexes
  104. Rajendra R. Zope, Marco Olguin, and Tunna Baruah,
    Journal of Chemical Physics 137, 084317 (2012).

  105. Low-lying planar isomers of neutral and charged B22 clusters
  106. B. C. Hikmat, T. Baruah and Rajendra R. Zope,
    Journal of Physics: At. Mol. Opt. Phys. 45, 225101 (2012).

  107. Geometry and electronic structure of neutral and charged B21 clusters
  108. Ruben Casillas, Tunna Baruah, and Rajendra R. Zope, ,
    Chemical Physics Letters 557, 15 (2013).

  109. Calcium coated B80 fullerene: A study on various coating configurations of B80
  110. Marco Olguin, Tunna Baruah, Rajendra R. Zope,
    Chemical Physics Letters, 514,66 (2011).

  111. Snub boron nanostructures: Chiral fullerenes, nanotubes and planar sheet
  112. Rajendra R. Zope and T. Baruah
    Chemical Physics Letters, 501, 193 (2011).

  113. Optical excitation energies, Stokes shift and spin-splitting of C24H72Si14 from numerical and analytic density-functional theory
  114. Rajendra R. Zope, T. Baruah, S. L. Richardson, M. R. Pederson and B. I. Dunlap,
    The Journal of Chemical Physics, 133, 034301 (2010).

  115. Dipole polarizability of isovalent carbon and boron cages and fullerenes
  116. Rajendra R. Zope and Tunna Baruah
    Physical Review B 80, 033410 (2009).

  117. Boron fullerenes: From B$_{80}$ to hole doped boron sheets
  118. Rajendra R. Zope, Tunna Baruah, K. C. Lau, A Y. Liu, M. R. Pederson and B. I. Dunlap,
    Physical Review B (Rapid Communications)79, 161403(R) (2009)

  119. The alpha- boron cages with four member rings
  120. Rajendra R. Zope,
    Eurphysics Letters, 85, 68005(2009).

  121. Structural and bonding properties of bcc-based B80 solids  
  122. Amy Y. Liu, Rajendra R. Zope, and Mark R. Pederson ,
    Physical Review B 78, 155422 (2008)

  123. The vibrational stability and electronic structure of B80 fullerene  
  124. T. Baruah, M. R. Pederson, and Rajendra R. Zope,
    Physical Review B 78, 045408 (2008).

  125. Electronic structure and static dipole polarizability of  C60@C240
  126. Rajendra R. Zope
    Journal of Physics B: At. Mol. Opt. 41, 085101 (2008) (Featured article 2008).

  127. Static dipole polarizability of icosahedral carbon fullerenes from C60 to C2160 characterized by an all electron density functional theory
  128. Rajendra R. Zope, Tunna Baruah, M. R. Pederson and B. I. Dunlap,
    Phys. Rev. B 77, 115452 (2008).

  129. The static dipole polarizability of C70 fullerenes
  130. Rajendra R. Zope
    Journal of Physics B: At. Mol. Opt.  40, 3491-3496 (2007).

  131. Efficient quantum-chemical geometry optimization and the structure of large icosahedral fullerenes
  132. Brett I. Dunlap and Rajendra R. Zope
    Chemical Physics Letters, vol. 422, issue 4-6, pp. 451-454(2006).

  133. Comparative study of unscreened and screened molecular static linear polarizability in the Hartree-Fock, hybrid-density functional, and density functional model
  134. R. R. Zope, Tunna Baruah, M. R. Pederson and B. I. Dunlap,
    International Journal of Quantum Chemistry, 108, 307 (2008);
    arXiv:0701466v2

  135. Polarizabilities of intermediate sized lithium clusters from density functional theory
  136. R. R. Zope, Tunna Baruah, and M. R. Pederson,
    Journal of Computational Methods in Sciences and Engineering; Vol. 7, Pages: 495-505 (2007) (Special issue on alkali metal clusters).
    arXiv:0706.0555

  137. Dipole moments from atomic-number-dependent potentials in analytic density-functional theory
  138. B. I. Dunlap, S. P. Karna, and R. R. Zope,
    J. Chem. Phys. 125, 214104 (2006).

  139. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory
  140. Rajendra R. Zope and Brett I. Dunlap
    J. Chem. Phys. 124,044107 (2006) .

  141. Momentum-space properties from coordinate-space electron density
  142. M. K. Harbola, Rajendra R. Zope, A. Kshirsagar, and Rajeev K. Pathak
    J. Chem. Phys. 122, 204110 (2005).

  143. Slater's Exchange Parameters for Analytic and Variational Xalpha calculation
  144. R. R. Zope and B. I. Dunlap,
    J.Chem. Theory Comput. 1, 1193 (2005)

  145.  Electronic structure of fullerenelike cages and nanotubes of aluminum nitrides
  146. R. R. Zope and B. I. Dunlap
    Phys. Rev. B 72, 045439 (2005)

  147. Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model
  148. Rajendra R. Zope and Brett I. Dunlap
    Phys. Rev. B71,193104 (2005).

  149. On the optimal value of alpha for the Hartree-Fock-Slater method
  150. R. R. Zope and B. I. Dunlap
    Chemical Physics Letters, vol. 399, issue 4-6, pp. 417-421(2004).

  151. Are hemispherical caps of boron–nitride nanotubes possible?
  152. R. R. Zope and B. I. Dunlap,
    Chem. Phys. Lett. 393, 300 (2004).

  153.  Theoretical infra-red, Raman, and Optical spectra of the B36N36 cage
  154. R. R. Zope, Tunna Baruah, M. R. Pederson, and B. I. Dunlap,
    Physical Review A 71, 025201 (2005) ; arXiv:physics/0501094

  155. Electronic structure, vibrational stability, infra-red and Raman spectra of B24N24 cages.
  156. R. R. Zope, Tunna Baruah, M. R. Pederson, and B. I. Dunlap,
    Chemical Physics Letters 393, 300 (2004); arXiv:0407031

  157. Electronic structure, vibrational stability, and predicted infrared-Raman spectra of the As20 , As@Ni12 , and As@Ni12 @As20 clusters
  158. Tunna Baruah, Rajendra R. Zope, Steven L. Richardson, and Mark R. Pederson,
    Journal of Chemical Physics, 121, 11007 (2004).

  159. Stability of Asn [n=4, 8, 20, 28, 32, 36, 60] cage structures
  160. Tunna Baruah , M. R. Pederson, R. R. Zope, and M. R. Beltr'an,
    Chemical Physics Letters, 387, 476 (2004).

  161. Molecular Structures and vibrations of neutral and anionic CuOx (x=1 - 3,6) clusters.
  162. T. Baruah, R. R. Zope, and M. R. Pederson,
    Physical Review A 69, 023201 (2004).

  163. Electronic structure and rebonding in the onion-like As@Ni12 @As20 cluster.
  164. T. Baruah, R. R. Zope, S. L. Richardson, and M. R. Pederson,
    Physical Review B (Rapid Communication), 68, 241404(R), (2004); PDF

  165. Interatomic potentials for atomistic simulations of the Ti-Al system
  166. Rajendra R. Zope and Y. Mishin
    Physical Review B 68, 024102 (2003).

  167. Density functional investigation of the size dependence of the electronic structure of mixed aluminium-sodium clusters
  168. A. Dhavale, D. G. Kanhere, S. A. Blundell, and Rajendra R. Zope
    Physical Review B 65, 085402 (2002).

  169. Conformers of Al13 , Al12M, and Al13M (M = Cu, Ag, and Au) clusters and their energetics
  170. Rajendra R. Zope and Tunna Baruah
    Physical Review A 64, 053202 (2001).

  171. Electronic and structural properties of NanAu and NanAg (n = 1–10) clusters
  172. Tunna Baruah, S. A. Blundell, and Rajendra R. Zope
    Physical Review A 64, 043202 (2001).

  173. Charge induced fragmentation of sodium clusters
  174. P. Blaise, S. A. Blundell, C. Guet, and Rajendra R. Zope
    Physical Review Letters 87, 063401 (2001).

  175. Density functional study of structural and electronic properties of NanMg (n = 1–12) clusters
  176. Rajendra R. Zope, S. A. Blundell, Tunna Baruah, and D. G. Kanhere
    Journal of Chemical Physics, 115, 2109 (2001).

  177. Topological study of charge densities of impurity-doped small Li clusters
  178. Tunna Baruah, D. G. Kanhere, and Rajendra R. Zope
    Physical Review A 63, 63202 (2001).

  179. Density functional study of electronic structure and related properties of aluminum doped sodium clusters
  180. Rajendra R. Zope, S. A. Blundell, C. Guet, Tunna Baruah, and D. G. Kanhere
    Physical Review A 63, 43202 (2001).

  181. Full potentil LAPW calculation of magnetic Compton profile of ferromagnetic Ni
  182. Tunna Baruah, Rajendra R. Zope, and Anjali Kshirsagar
    Physical Review B 62, 16 435 (2000).

  183. Ground-state geometries and stability of impurity doped clusters: LinBe and LinMg (n= 1–12)
  184. M. Deshpande, A. Dhavale, Rajendra R. Zope, C. Chacko, and D. G. Kanhere
    Physical Review A 62, 63 202 (2000).

  185. Momentum space properties of atoms: Application of the generalized gradient approximation
  186. Rajendra R. Zope
    Physical Review A 62, 64 501 (2000).

  187. Temperature dependence of polarizability of sodium clusters
  188. S. A. Blundell, C. Guet, and Rajendra R. Zope
    Physical Review Letters, 84, 4826 (2000).

  189. Full potential LAPW calculation of electron momentum density and related properties of Lithium
  190. Tunna Baruah, Rajendra R. Zope, and Anjali Kshirsagar
    Physical Review B 60, 10 770 (1999).

  191. Atomic Compton Profiles within different exchange-only theories
  192. Rajendra R. Zope, M. K. Harbola, and R. K. Pathak
    European Physical Journal D 7, 151 (1999).

  193. Positron and positronium affinities within the work formalism Hartree- Fock approximation
  194. Rajendra R. Zope
    Physical Review A 60, 218 (1999).

  195. Total atomic energies using indirect-path methods
  196. M. K. Harbola, Rajendra R. Zope, and R. K. Pathak
    Physical Review A 53, 3652 (1996).

  197. Leading corrections to the Compton profiles beyond the impulse approximation : second-order correction
  198. Rajendra R.Zope, Anjali Kshirsagar, and R. K. Pathak,
    Chem. Phys. Lett. 242, 555 (1995).

  199. Positron binding : A positron-density viewpoint.
  200. Tunna Baruah, Rajendra R. Zope, A. Kshirsagar, and R. K. Pathak
    Physical Review A, 50, 2191 (1994).

    Proceedings/Book Chapters/Preprints:

    1. Fully Analytic Implementation of Density Functional Theory for Efficient Calculations on Large Molecules
    2. Rajendra R. Zope and B. I. Dunlap,
      Chapter 9 inMultiscale Simulation Methods for Nanomaterials,  John Wiley & Sons, Inc. (2008).

    3. Equilibrium structure and vibrational spectra of sila-adamantane
    4. R. R. Zope, T. Baruah, M. R. Pederson and S. L. Richardson
      arXiv:1005.5381v1

    5. Geometry and electronic structure of neutral and charge B21 cluster
    6. Ruben Casillas, Tunna Baruah, and Rajendra R. Zope (Submitted to Chem. Phys. Lett- October 2011).

    7. Electronic Structure and stability of As@Ni12 @As20 and As cages
    8. T. Baruah, R. R. Zope, S. L. Richardson and M. R. Pederson,
      Proceedings of International Symposium of Clusters and Nano-Assemblies (2005).